
REMOTE SENS. ENVIRON. 39:61-74 (1992) 

Interaction of Photons in a Canopy of 
Finite-Dimensional Leaves 
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The  physics of neutral particle interaction for 
photons traveling in media consisting of finite- 
dimensional scattering centers that cross-shade 
mutually is investigated. A leaf canopy is a typical 
example of such media. The leaf canopy is idealized 
as a binary medium consisting of gaps (voids) and 
regions with phytoelements (turbid phytomedium). 
Gaps through which photons travel unimpededly 
are assumed to be randomly distributed. The math- 
ematical approach for characterizing the structure 
of the host medium is considered in detail. In 
this approach, the leaf canopy is represented by a 
combination of all possible open oriented spheres. 
With rigorous definitions and notations, depen- 
dence of the extinction coefficient on the phase- 
space coordinates of the previous interaction center 
is shown to be a logical consequence. Specifically, 
the extinction coefficient at any phase-space loca- 
tion in a leaf canopy is the product of the extinction 
coefficient in the turbid phytomedium and the prob- 
ability of absence gaps at that location. Using a 
similar approach, an expression for the differential 
scattering coe~cient is derived. Numerical results 
are presented to illustrate the influence of canopy 
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parameters and direction of photon travel on the 
extinction coefficient. 

INTRODUCTION 

The problem of photon transport in plant stands 
arises in the context of optical remote sensing of 
vegetated land surfaces, land surface climatology, 
and plant physiology. For instance, in the applica- 
tion of remote sensing from satellite-based sensors 
to vegetated land surfaces, an understanding of 
the spectral response resulting from the aggrega- 
tion of leaves in a canopy and the intervening 
atmosphere is required. The physics of this prob- 
lem is most conveniently posed as a photon trans- 
port equation, the solution of which is the remote 
spectral measurement. This sets the context for 
our presentation; we now begin with a precise 
statement of the problem. 

Consider a region D of three-dimensional 
space filled with finite-dimensional planar leaves 
of given optical properties. For purposes of pho- 
ton transport, it is sufficient to characterize the 
leaves by probability distributions of their loca- 
tion, size, shape, and orientation of normals. It is 
supposed that photons interact with leaves only. 
Therefore, we ignore photon interactions with the 
optically active elements of the atmosphere inside 
the region D. A photon traversing an elementary 
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path in region D can be assigned some probability 
of either being absorbed or scattered into another 
direction. To describe these events quantitatively 
in transport theory, the concept of extinction and 
scattering coefficients are required. In this paper 
we derive expressions for these coefficients. 

Ross (1981) defined these coefficients on the 
basis of ideas extensively used in atmospheric 
optics and nuclear reactor phys ics- the  so-called 
turbid plate medium theory (Shifrin, 1953). In 
many cases this approach leads to acceptable re- 
suits (Shultis and Myneni, 1988). Nevertheless, 
the turbid plate medium analogy for transfer pro- 
cesses in leaf canopies is a rather crude, and even 
incorrect, model. To confirm this, one only has to 
compare solutions of the transport equation for a 
plant canopy with Monte Carlo models (Ross and 
Marshak, 1989; Antyufeev and Marshak, 1990). 
What, then, is the main difference between trans- 
port problems in an atmosphere and a leaf canopy? 

As a rule, an atmosphere (nuclear reactor) is 
a multilayer (multizone) medium. The geometry 
(or structure) of layers is strictly determined. In- 
side any layer, other than vacuum, the probability 
of scatter or absorption for a photon traveling an 
elementary path is greater than zero. This prop- 
erty is violated in a leaf canopy. For example, in 
a leaf canopy there are gaps of finite size (voids) 
through which a photon can travel without hin- 
drance; that is, the probability of an interaction 
is zero. In other words, a leaf canopy can be 
considered as a binary medium-voids  and re- 
gions filled with phytoelements. The distribution 
of gaps can be assumed to have a random charac- 
ter. It is noteworthy that a similar problem arises 
in radiative transfer studies in decks of broken 
clouds (Avaste and Vainikko, 1973; Vainikko, 
1973). 

Thus, we begin with the proposition that D 
consists of two regions. The first is a turbid me- 
dium filled densely with phytoelements. We shall 
call it turbid phytomedium or, for short, phy- 
tomedium. The second is a region of randomly 
distributed free spaces or voids without phytoele- 
ments. The region D comprising the phytome- 
dium and voids is our leaf canopy. We introduce 
an elementary volume V(V,0) where ~ is the 
three-dimensional spatial coordinate of a photon 
and fl is its direction of travel. Clearly, the fate of 
a photon depends on the availability of phytoele- 
ments inside V. If V belongs to the phytomedium, 

the fate of a photon is determined by the coeffi- 
cients of extinction and scattering (Ross, 1981; 
Shultis and Myneni, 1988; Marshak, 1989). If, on 
the other hand, V belongs to the free space, a 
photon does not interact with a phytomedium. It 
follows from this that the mean free path of a 
photon (the distance between two successive in- 
teractions) is the sum of two random va lues - the  
first is the length of photon travel in the free 
space, and the second is the length of photon 
free path in the phytomedium. Thus, in order to 
describe the rules of photon movement in a leaf 
canopy, one has to know not only the coefficients 
of extinction and scattering of turbid phytome- 
dium but also the distribution of voids along the 
path of photon travel. 

Kuusk (1985) considered dependence of the 
distribution of free spaces (along the path of pho- 
ton travel) with respect to space and angular 
variables (also see Nilson and Kuusk, 1989). The 
probability Q that a point ~ inside a leaf canopy 
can be viewed from two points ~ and r ~' was 
calculated as 

Q = P(~, ~, fl)P(~, ~', - fl~C~s(~, ~, ~', 0, il~, 

where P(?,~,fl) is a permitivity function, ~ = IT- 
5'1, ~'=1~-~1, f l= (~ -P ' ) /~ ,  f l '= (~-~) /~ ' ,  and 
CHS(?,~,~',fl,tT) is a correction factor. The sub- 
script HS is connected with the so-called hot spot 
effect. The product 

Q'(r, ~, ~', O, O~ = e(~, ~, fl)CHs(~, ~, ~', t~, fir> 

can be interpreted as a distribution function of 
voids from the point ~ along the direction fl of 
photon travel. The function Q' clearly depends 
on the point ~ and direction tiP. Therefore, the 
extinction coefficient in a leaf canopy depends 
not only on the phase-space location of photon 
travel (?,fl) but also on the previous point of 
interaction (~,fl~(Myneni et al., 1991). 

Strictly stated, the outcome of a current inter- 
action for a photon is influenced by its history. In 
this fashion, one may attribute "memory" to a 
photon. Nevertheless, it must be clearly under- 
stood that the correlation of photon fates is a 
direct consequence of the binary nature of the 
host medium. From a probabilistie point of view, 
the fate of photons at (?,fl) can be evaluated 
provided the event A(7',~',O~ -- Itwo successive in- 
teractions between photons and phytoelements 
occuring in the neighborhoods of ~ and ~ = ~ + 
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~'0', ~' > 0) has occurred. This allows us to repre- 
sent the extinction coefficient at (~ + ~13,0) for 
those photons with previous state (~,fl~ as a prod- 
uct of the extinction coefficient in the phytome- 
dium 6(? + ~13,13) (which does not depend on their 
previous state) and the probability [1 -  q(? + ~fl, 
Ill~,ilg] of encountering a phytomedium (which 
depends on their previous state). The realization 
of the event A(~,~',fl9 means that there are no 
phytoelements between ~ and ~ = ~ +  ~11'. In 
which case, the probability q(? - ~ii', - 0'l~,fl') = 1, 
if 0 ~< ~ ~< ~', that is, a photon from (? , -  Il9 can 
unimpededly reach the previous site of interac- 
tion (~,flt). These considerations are the founda- 
tion of our development of the extinction and 
scattering coefficients. 

The plan of this article is as follows. In the 
next section the extinction coefficient for a turbid 
phytomedium is described. The dependence on 
previous state for photon interactions is rational- 
ized in the third section. In the fourth section, 
the architecture of a leaf canopy model is dis- 
cussed. The fifth and sixth sections are devoted 
to the derivation and analysis of the probability 
q(? + ~fl,ill~,fl'). In the seventh section, these re- 
sults are applied to the scattering coefficient. A 
final section considers some numerical examples. 
The Appendix deals with the cross-shading effect 
that occurs naturally in the definition of the ex- 
tinction coefficient in plate turbid medium models. 

THE INTERACTION BETWEEN PHOTONS 
A ND TURBID PHYTOMEDIUM 

We suppose that the elementary volume V(?,ii) 
belongs to the turbid plate phytomedium. The 
theory of radiative transfer is well developed for 
treating problems in astrophysics (Chandrasekhar, 
1960) and atmospheric optics (Kondratyev, 1969). 
Ross (1981) generalized this theory to the plate 
turbid medium consisting of nondimensional but 
oriented scatterers. Attempts to include the leaf 
size in the framework of radiative transfer theory 
were made by Marshak (1989) and Myneni et al. 
(1991). In this section we shall closely follow the 
ideas presented in the latter. 

Let 6 denote the extinction coefficient in the 
turbid plate medium. It consists of two pa r t s -  
the first characterizes the scattering event and 
the second, the absorption event, for a photon 

traveling an elementary distance. In case of ori- 
ented plates, both events depend on the direction 
of photon travel, in addition to space variables- 
a point first emphasized by Ross (1981). 

We begin with a quantitative description of 
the architecture of plate turbid medium. Let 
[(271")- lhL(Y,aL,OL) ] be the probability density that 
a leaf of area aL at a point Y has a normal 
IlLtXJ(OL, C~L), directed away from its upper surface 
into a unit solid angle about IlL in the upper 
hemisphere. Thus 

1 ~ 
~ f o  f2~+ hL(-?, aL, IlL) daL dill = 1, 

where 27r + is the upper hemisphere. We assume 
that the random variables aL and IlL are indepen- 
dently distributed; thus, 

1 
lhL(-?'2r aL, ilL) ------ PL(-?, aL)~gL(-?, ilL). 

Here, PL is the probability density of leaf size 
distribution, and gL/27r is the probability density 
of leaf normal orientation distribution. Models for 
the latter are available in literature (Bunnik, 1978; 
Goel, 1988; Nilson and Kuusk, 1989). 

Let nL(r,aL) be a function that relates the num- 
ber of leaves in the elementary volume to leaf size 
aL. Then, [nL(~,aL)PL(-r,aL)gL(Y,flL)aLlil'ilLI / 27r] is 
the area projected on a plane perpendicular to f] 
by the leaves in elementary volume around ? with 
size aL and a normal directed into a unit solid 
angle about OL. Integrating the above over all leaf 
areas aL and over all orientations 0L gives the 
extinction coefficient 6, 

#(?, ft) = G(-?, II)ISaLnL(-?, aL)PL(-?, aL) daL, (1) 

where the function, 

1 I r G(?, Il) = ~J2,+ gL(', Iln)lil'ilLI dQL, 
27r 

(2) 

is the total leaf area projected on a plane perpen- 
dicular to the direction II, by leaves of all orienta- 
tions (Ross, 1981). The leaf area density function 
UL(?) introduced by Ross (1981) is equivalent to 

c o  

UL(-r) = IoaLnL(Y' aL)PL(-r, aL) daL. (3) 

If all the leaves in V(?,ii) are of the same size a0, 
then PL(?,aL) = 6(aL -- a0), and 

0(-?, Il) = aonL(?, ao)G(-?, Il) = UL(?)G(?, II), (4) 
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where 

uL(?) = aonL(-?, ao) (5) 

for any a0. 
It should be noted that it is not easy to obtain 

the leaf area density uL at a point ? using formulae 
(3) or (5). To measure uL, inclined point quadrats 
method and stratified clip method, or other meth- 
ods can be employed (see Ross, 1981; Myneni et 
al., 1989). A recent development in models for 
leaf area density is fractal-based theory (Myneni 
et al., 1990). One important point, however, is 
that two finite volumes with the same leaf area 
density and orientation distribution might have 
different degrees of mutual shading. The use of 
Eq. (4) leads to the same extinction coefficient 
6(?,fl). In order to account for overlapment or 
mutual shading between leaves in a finite volume, 
a dimensionless function x was introduced by 
Myneni et al. (1991). Those ideas are expanded 
using a simple model for x in the Appendix. 

D E P E N D E N C E  ON THE PREVIOUS STATE 

In this section we rationalize the dependence of 
photon fate on its previous phase-space state. 
Since photons traveling in parallel or nearly paral- 
lel directions, separated by an infinitesimally small 
spatial extent, are likely to be intercepted by the 
same leaf or pass without hindrance through the 
same gap, Myneni et al. (1991) introduced photon 
interaction coefficients that depend on the previ- 
ous point of interaction. This imbues the coeffi- 
cients with an important property, namely, if after 
a scattering act, a photon were to trace its previ- 
ous trajectory, it is likely to experience its recent 
history with unit probability. Since these argu- 
ments are intuitive, we shall give them a rigorous 
basis here. 

We denote a photon by its phase-space loca- 
tion (~,0) and an elementary volume about (~,fl) 
by V(?,O). Here, ~ oo (x,y,z) E D is a point of the 
three-dimensional space, D is a region in the leaf 
canopy, and 0 = (i]x,i]y,i]z) (i] ~ + fl ~ + fl z 2 = 1) is a 
unit vector along the direction of photon travel. 
The following definitions are necessary for further 
development. 

Definition 1. We say that a photon (~ + ~1],1]), 
> 0, has a previous state (~,Or), if two successive 

interactions between the photon and scattering 

I 
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Figure 1, The elementary volumes V(/',fl) and V(r',fl~, 
where interactions occuring are denoted as points. The 
point (~,0~ preeeeds point (f',ll). The dotted line illus- 
trates photon free path, that is, there are no interactions 
along it. All photons (~" + ~0,fl), ~/> 0, have the same 
previous state (r',t]O. 

elements occurred in the neighborhoods V(~,0~ 
and V(?,flr), where V(-?,OONV(~,OO=~ and 

= ~ + I~ - ~10' (Fig. 1). 
Definition 2. The function a(? + ~0,fll~,fl r) is 

the fraction of photons from V(? + ~fl,fl), with previ- 
ous state (~,l]r), attenuated in the medium while 
traversing an elementary distance [~ + ~f],? + 
(~ + d~)fl]. This defines the extinction coefficient. 

We emphasize that the extinction coefficient 
a describes the attenuation not of all photons but 
only those with previous state (~,flt). In other 
words, from all photons in the elementary volume 
V(?,0), we consider only those with previous state 
(~,fl~) and describe their attenuation along the 
line l? + G0, ~ i> 0/. This distinction is necessary 
to derive the transport equation for photons with 
dependence on their previous state (Knyazikhin, 
1990; Myneni et al., 1991). The value o(?,0l?,i]) 
can be defined as the limit 

= lira a(Y, 01Y - GO, fl). (6) 

This definition of a(?,01?, i]) has a physical inter- 
pretation. A photon can interact with the medium 
as a consequence of movement only. This fact 
is reflected in the definition of each coefficient 
by using the phrase "in traveling an elementary 
distance." Therefore, the coefficient a(~,fll~,fl) 
describes the attenuation of photons arriving 
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from V(T- d(fl,11) (d(>0)  to V(T,11). It is most 
important to note that V(T,fl)O V(T- (11,11)= ~. 
Say that this condition is violated, that is, 
V(T,11) O V(? - (0,11) # ~, if ( --* 0 +. It is under- 
stood that "an elementary volume about the point 
(T,11)" means the process of"squeezing" the neigh- 
borhood of this point to the (T,fl) [a strict mathe- 
matical description of these concepts can be 
found in Smelov (1978)]. Then, both the condition 
V(T,11) O V(T - ~fl,11) # ~, if ~ --* 0 +, and degener- 
ation of the neighborhood of the point (T,11) to 
itself does not exclude the photon (T,11). Thus, 
there may be a photon that can potentially inter- 
act with the medium without movement; but such 
photons must be excluded from our consideration. 
One can also note that equality (6) is an important 
topological characteristic of the physical process 
under study, and any change in its precise defini- 
tion can lead to qualitive changes of the ensuing 
processes. 

The (differential) scattering coefficient can be 
defined in a similar manner. Let a~(-? + (fl, fl --" 11" IP, 
fl9 d11 be the fraction of photons in an elementary 
volume V(T + (11,11), with previous state (P, flg, that 
is scattered into a unit solid angle about 11" as a 
consequence of interaction with phytoelements 
(also consult the section on the scattering coeffi- 
cient). It should be emphasized that scattering 
changes not only the direction of photon travel 
but also its previous state (Myneni et al., 1991). 

Let the number of photons in the elementary 
volume V(T + ~fl,11) with previous state (P,119 be 
dN(T + ~11,fllP,119. Then: 
Definition 3. The function 

¢,(T + ~11,fllP, fl') - dN(T + (11, fliP, 111 
cl-?dfldPd11' 

(7) 

is the conditional probability density of photons 
(T + ~fl,fl) with previous state (P, fl9 and 

¢(T, fliT, fl) 
= l im  ~b(T, f l i t  - ~fl, fl). 

~ 0+ ;vC¢, O) n v~ - ~fl, o)= ~ 

The above limit has the same interpretation as 
(6). A strict definition of (7) can be found in 
Smelov (1978). The function ~b (aside from a trivial 
factor) was interpreted by Myneni et al. (1991) as 
the partial intensity of photons with the same 
previous phase-space state. 

It is not difficult to see that the density ~(T,11) 

and the conditional probability density ~b(T,fllP, fl9 
are connected by the following relationship: 

~(~) ~ 
~(T, fl)=f4d11Io ff(r, f l l r -~ l l ' , f l  9 d~', (8) 

where ~(119 is the distance between T and the 
boundary of D along the direction -I'lL 

T H E  S T R U C T U R E  O F  A L E A F  C A N O P Y  

The definitions introduced in the previous section 
are necessary to highlight the fact that photons in 
an elementary volume are heterogeneous; that 
is, photons with different previous states have 
different probabilities of encountering voids (Kuusk, 
1985; Myneni et al., 1991). In this section, the 
structure of such a binary medium is investigated. 

The length ~? of the interval I P + ~ ' ,  0-N< 
~,< IT-PI/ between two successive interactions 
in elementary volumes V(P,ll 9 and V(T,fl 9 is the 
sum of two random values- length of free space 
and length of photon mean free path in the phy- 
tomedium. Let P(P, fl',~9, ~'> O, be the probability 
density of distribution of the random value ~1. The 
probability density P(P,11',~9 and the conditional 
probability density ~b(T,flIP, fl9 are related as 

~b(T, fliP, fl') = ,p(P, @)p(P,Q',IT - PI)crs(P 
+ IT - PI11',@--*fllP, 119, (9) 

where the density ~.o(T,fl) is defined by Eq. (8). 
The scattering coefficient as will be defined later. 
Then, to find p(T,11,~) from Eq. (9), the conditional 
probability density ~.b(T,flIP,119 must be evaluated 
by solving the corresponding transport equation. 
We notice that if the region D consists of a phy- 
tomedium only (absence of voids), then the func- 
tion p is the probability density of the length of 
photon free path in a turbid medium, 

P(P,11',~9 

= #(P + ('fl',119 exp - I0#(P + tfl', fl') dt .  

Integrating both sides of Eq. (9) by analogue of 
Eq. (8) gives the "ordinary" integral transport 
equation (Smelov, 1978). 

In order to separate photons with the same 
previous state from all photons in the elementary 
volume V(T,11), we represent the region D as a 
combination of all possible open oriented spheres, 
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i "  i l" I -  """ "N 
//  

Figure 2. A sphere S(g~,~,ll~) with its cen- 
ter at g~ of radius (~ and orientation 06. The 
center of the sphere belongs to the line (fl~, 
E>o. 

Here, S(F~,t~,fl~) denotes a sphere of radius t~ 
with its center at F~ and of orientation fla. By 
orientation we mean the unit vector fl~ = (~2,x,12~ 
i2~z) (12~x+l]~y+i2~= 1), drawn from the surface 
and directed to the center of the sphere (Fig. 2). 
A photon (F,fl) with previous state (?,i2~ belongs 
to the sphere S(F,IF- ~1,i2~). Further, if a photon 
(F,i2) changes position to (7*,fl*) as a result of 
collision, then according to our abstraction it be- 
longs to S(7", IF - ~* [,fl). The probability of photon 
transfer from one sphere to another is described 
by the probability density p. 

Considering the nature of interactions be- 
tween photons and phytoelements in a leaf can- 
opy, we shall proceed with the assumption that 
the event A(~,IF- ~l,fl~--[two successive points 
of the interaction between a photon and phytoele- 
ments occuring in V(P,12O and V(F,IT) respec- 
tively] is valid. It means that the interval between 
the points F and ~ does not contain any phytoele- 
ments. The probability density of the event A(~, 
t',f] 3 is simply the function P(~,fl',t~, ~'= IF- ~l. 

Let q(F + tfll~,fl 0 be the conditional probabil- 
ity of encountering a void in the elementary vol- 
ume V(F + tfl,fl), provided that the event A(~, 
IF- ~l,fl r) was realized. Then, the extinction co- 
efficient at (F + tfl,~l) for photons with previous 
state (~,fl') is 

o(F + tO, fliP, fl 9 
= O(F + tt'l, O)[1 - q(F + tO, fliP, fl')], 

where 6(F,O) is the coefficient of extinction in the 
turbid phytomedium (see the second section). 
Since A(~,IF - ~l,t]O is realized, q(F - tO', - 0'1~, 
f l~= l  and a(F-tfl',fl ',l~,fl~=0, for 0~<t~< 
IF- ~1. Proceed from the finite scatterers the gap 
between F and P is construed to extend from the 
interval [(F - tfl',fl'); 0 ~< t ~< IF - ?1] to a suffi- 
ciently small spherical cone, 

K@, P, - o ' ,  = [@ - tn, a3: t 
(lO) 

The value ~" is the cosine of the angle between 
the height and base of the cone. It depends on 
the dimensions of the phytoelements. Thus, for 
example, if leaves are infinitely small, then ~" = 1, 
and the cone K degenerates to the interval 
[(F - tfl',fl~; 0 ~< t ~< IF - ~11. In this case, a = 6 al- 
most everywhere. This corresponds to the transfer 
of photons in a turbid medium (standard transport 
theory). 

With the above in mind, we postulate the 
following: 

1. A photon (F,fl) with previous state (~,fl~ can 
encounter a void only inside the sphere 
s ( F ,  IF - 

2. The closer the direction fl, of a photon (F,fl) 
with previous state (~,f]~, to fl', the greater 
the probability of encountering a void when 
traveling along ft. 

Thus, the memory of a photon can be under- 
stood as follows. A photon at F "has" some informa- 
tion about the realization of the random value 
characterizing the spatial distribution of phytoele- 
ments. This information is meaningful only in the 
space encompassed by an oriented sphere with 
center at F and radius IF-~1; here F and ~ are 
two successive points of interaction. A photon 
"knows," for example, that the path back from F 
to ~ is free ofphytoelements. The information that 
the photon possesses depends on the previous 
phase-space point of its interaction. Conse- 
quently, two photons at F with different history 
will have different information regarding the dis- 
tribution of phytoelements and/or voids around 
it. So, the length of their mean free path scattering 
at F can be different as well. After each interaction 
the information is updated (Myneni et al., 1991). 
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PROBABILITY OF ENCOUNTERING VOIDS 

In this section we derive the probability that a 
photon traveling along fl will encounter  a void 
inside the sphere S(F, IF-~l,flt). Let q(t) be the 
desired probability at F~=F+tf l ,  0~<t--<t'= 
IF-~I .  Suppose that the event A(P, IF-PI,flt) 
(after interaction at P, a photon traveling along fl' 
hits a phytoelement  at F; Fig. 1) is realized. This 
is only the information that is required to derive 
the distribution of voids. 

Let K = K[(fl'flt)] be the rate of decrease of the 
probability q of encountering voids. Clearly, K 
depends on the geometrical parameters of the 
canopy (next section). Also, we introduce the con- 
tinuous weight function v(x), x= (fl.flt), _ 1 ~< 
x ~< 1, such that 

(v ( -X)=l ,v ( l )=0 , I i_ lv (X)  dx=X).  (11) 

Next, we propose that the voids are uniformly 
distributed with respect to azimuth ~ - ~d; here 
is the azimuth of direction fl and, similarly, ~' of 
fl'. It is seen that the weight v[(fl'flt)] continuously 
increases from the direction fl = fl' (extention of 
the ray fit) to the direction fl = - f l '  (retrodirec- 
tion). Now, a source function for voids can be 
defined as follows: 

f ( t )  = v exp( - Kt)di(t'- t), 0 ~< t ~< t', (12) 

where ~ is the Dirac delta function. 
An expression for the probability q can be 

derived with the above in mind. It is not difficult 
to see that with increase in t from the center 
of the sphere to its surface, the probability of 
encountering a void decreases and 

q(t + At) = q(t) + &tKq(t) + A~f(t). 

Dividing both sides of the above by At and consid- 
ering the process At--* 0, we obtain 

q'(t) = Kq(t) +f(t). (13) 

As a boundary condition one can write 

q(0) = v [ ( f l "  f i t ) ] ,  (14) 

since the probability of encountering a void at the 
center  of the sphere along fl = -fl~ is equal to 
unity. This condition ensures that the probability 
of encountering a void at the center  of the sphere 
along f l=f l '  is zero [cf. Eq. (11)]. Solving the 
initial-value problem [Eqs. (13) and (14)], we ob- 
tain 

q(t) = f o r ( t )  exp[--K(t t ')] dr', 

and with the source function (12) we obtain ex- 
plicitly 

q(t) = v exp( - Kt)H(t ' -  t), 0 < t < t', (15) 

where H(x) is the Heaviside function 

= f ,  ifx i> O, H(x) 
, i fx<  O. 

The Heaviside function assures consideration of 
voids inside the sphere S(F,t',flt) only (see the 
previous section). 

Finally, an example of the weight function v. 
In the simplest case, one can think of a linear 
function of the form 

v(x) = (1 - x) / 2, x = (fl" fit). (16) 

Clearly, (16) satisfies the conditions implied by 
(11). 

RATE OF CHANGE OF THE PROBABILITY 
OF ENCOUNTERING VOIDS 

Consider a sphere S(F,I?-~l,flt) containing phy- 
toelements of finite dimensions. The leaf area 
density and leaf normal orientation are averaged 
over the sphere S and treated as constants, 
EL and go. For instance, 

~/~(F, IF - ?1,  fl') 

_ 3 fsf~ I~ - ~1, n~ uL(r~t) d?'. 
4 r l F - ~ l  ' 

Without loss of detail, the phytoelements are as- 
sumed circular in shape and of constant diam- 
eter dL. 

In the previous section we derived the proba- 
bility of encountering a zone free of phytoele- 
ments for photons (F + tfl,fl) with previous state 
(~,flt). Combining Eqs. (15) and (16) gives 

q(F + tfl, fliP, fl') = 0.511 - (ft. fit)] 
x e x p ( -  Kt )S( t ' -  t), 0 ~< t ~< IF- ?l. (17) 

The complete argument list of the probability 
q are written to emphasize dependence  on the 
previous state (F',flt). The extinction coefficient 
(following its definition as the product of two 
probabilities) can be written as 

o(F + tfl,fllP, fit) d t  = #(F + tfl, fl) d t  
x [1 - q(F + tfl, {}IP, flt)]. (18) 
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The first term, # d~ [defined by Eqs. (1) or (4)], 
is the probability that a photon will be captured 
while traveling a distance d~ in the phytomedium, 
which does not depend on the previous state. The 
second term, 1 -  q, denotes the probability of 
encountering a phytomedium, and this depends 
on the previous direction of photon travel fl' and 
on the previous point of interaction ~. One can 
conclude that the probability of encountering a 
void q is equal to the probability of dependence 
of the extinction coefficient on previous photon 
state. But this is the same as the probability of 
the dependence of photon mean free path on its 
previous state. Thus, we understand K to be the 
rate of decrease of the probability of dependence. 

There are four factors that influence d - I )  
uL, leaf area density over the sphere S; 2) dL, 
diameter of circular leaves; 3) gL, leaf normal 
distribution averaged over the sphere; 4) o~= 
cos-l(t'l'f~, the angle between fl and fl'. 

Nilson and Kuusk (1989) considered the cor- 
relation between two random indicator functions 
along fl and fl', and found a relationship between 
the radius of correlation, IL, diameter of the leaf, 
dL, and leaf orientation gL. For the case of spheri- 
cal orientation they found 

IL = (Tr z / 16) dL, (19a) 

and for horizontal leaves 

1L = (Tr / 4) dL. (19b) 

Thus, the number of parameters that influence K 
can be reduced to three--~L, lL, and c~, where IL 
can be considered as the length of mean chord. 
Let us consider these dependencies in some de- 
tail. 

1. Leaf area density uL: It is obvious that the 
greater the density ~L, the larger the cone K 
[Eq. (10)], and weaker the dependence of 
photon free path on (~,fl~. In the limit uL 
= 0 (absence of leaves), the rate K = oo, and 
q(P~,0) = 0, ~ > 0, I~ ¢ - f l '  (the cone K de- 
generates to the linear interval). On the 
other hand, if leaf area density is very large, 
the dependence is large as well and, in the 
limit, ~L = oo, the probability q(~,fl) = 1 for 
any direction ft. So, it is reasonable to as- 
sume that u ~ ~E ~. 

2. Size of leaves 1L: In the case of infinitesimally 
small leaves (IL = 0), dependence on the pre- 
vious state is absent, and q(P~,fl)= 0, which 

corresponds to an infinite rate of change of 
K. Also, in this case the cone K degenerates 
to the linear interval. However, the pres- 
ence of even a single but a large leaf that 
divides the sphere S into two hemispheres 
necessitates considerations of dependence 
for the entire sphere S. The K in this situa- 
tion spans the entire hemisphere. So, the 
rate of change of the dependence of photon 
free path is inverse proportional to the aver- 
age leaf size la, that is, K ~ 1£ 1 

3. Angle between successive directions of photon 
travel (~: We shall quantify angular spread 
between the vectors fl and fl' that pass 
through the center of the sphere S by the 
sine of the angle between them. In other 
words, the angle between the height and 
base of the cone is our parameter of choice. 
The smaller the value of Isin c~l, the closer 
fl is to fl' and the smaller is the cone K. 
Consequently, the rate of weakening of their 
dependence is also smaller. It is clear that a 
maximum value is reached when (fl" 0~ = 0 
and vice versa. Thus, K ~tsin (~1. 

From the above analysis one can write 

K ~lsin otl~E ll/] 1. (20) 

The coefficient of proportionality in Eq. (20) can 
be given a geometrical meaning. For example, 
Isin otl /2r can be considered as a fraction of the 
triangle between l~ and fl' (cross section of the 
cone) from the correspondent circle (cross section 
of the sphere). Thus, for instance, 

~=(1/27r) lsin c~l~E~lE ~. (21) 

One can also consider the square of a sector 
instead of the triangle. In this case, one obtains 
a /2r ,  0 < a < r / 2 ,  instead of Isin (xl/27r. How- 
ever, it is numerically less convenient. In fact, 
there are several ways of defining ~. The problem 
of a proper definition of ~ is far from trivial and 
is best answered with experimental data. 

SCATTERING COEFFICIENT 

In this section we apply the foregoing analysis to 
the scattering of photons, and derive an expres- 
sion for the scattering coefficient for a phytome- 
dium. As with photon capture, the scattering in- 
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teraction is described by a scattering coefficient 
@. The ratio #s'/# is the albedo of single scatter- 
ing, 60, denoting the probability of scattering given 
that a collision has occurred. However, since the 
scattering event serves to change the direction of 
photon travel, it is convenient to introduce the 
differential scattering coefficient #s. It describes 
the probability of scattering from f '  to a unit solid 
angle about f at F. The coefficient #s is related to 
@ as 

¢~s,(F ' f t )  = I4x0s(F;ft ~ f )  dr. (22) 

For a leaf assembly, the differential scattering 
coefficient can be expressed as 

bs(F;f'-" f)  = uc (1 / ~') F(F;f' --" f), (23) 

where UL is the leaf area density [Eq. (3)]. The 
function 1 ~ / r is the area scattering phase function 
(Ross, 1981) 

(1 / r) F(F;f'-* f)  = (1 / 2~') fz,~+ gL(F, f t ) l f "  fL1 

x 3'L(F, fL;f '  ~ f) dfL,  (24) 

which, in general, is not rotationally invariant 
because of the distribution function gL. Here, 3'L 
is the single-leaf scattering phase function. For a 
leaf at F with outward normal fL, this phase 
function is the fraction of the intercepted energy 
(from photons initially traveling in direction ft) 
that is scattered into a unit solid angle about fl 
(Shultis and Myneni, 1988). The leaf albedo 60L 
can be defined as 

60L( F, f t ; fL)  = I4~r"YL( F, fL; f! "~ f )  dr. 

Let PL and rL be the leaf hemispherical reflectance 
and transmittance, respectively. Then for the bi- 
Lambertian reflectance model (Ross, 1981), 

~PLl f ' f lLI / r ,  (fl 'fL)(ft 'fL) < 0, 
"yL(F'fL;ft'~" f )  = ~TLIf" fLI / 7r, ( f ' fL ) ( f t ' fL )  > 0, 

we have 

60L(F, f ' ; f L )  --- 60L(F) = 60(F). 

With this approximation the scattering coefficient 
for a phytomedium can be written as 

f t )  = Ot), 

and, thus, the leaf-albedo 60L is equivalent to the 
single scattering albedo ~ admitted by the trans- 
port equation. It was proved by Marshak (1989) 
that the condition 60 < 1 guarantees the existence 

and uniqueness of the solution to the transport 
equation in a turbid plate medium. If mutual 
shading between leaves in an elementary volume 
is accounted for, the area scattering phase func- 
tion [Eq. (24)] will change (details in the Ap- 
pendix). 

Now we apply results of the three previous 
sections to the scattering process. In the discus- 
sion leading to Eq. (18), we proposed that the 
extinction coefficient in a leaf medium consists of 
two probabil i t ies-the probability of being cap- 
tured in a phytomedium and the probability of 
encountering a phytomedium. In view of the fact 
that a collision preceeds a scattering interaction, 
the differential scattering coefficient as can be 
written as 

as(r'" + ~ ' ; f l ' ~  ill; ', fl'3 = bs(; + ~ ' ; f l ' ~  fl) 

x [1 - q(? + ~'fl; fl'l?', fl't)]. (25) 

Here, ~'= IF- ?1 and (~', fl't) is the previous state 
of a photon (?, fit). The differential scattering 
coefficient #s is defined by Eq. (23) and the proba- 
bility of encountering a void q is defined by Eq. 
(17), with x defined by Eq. (21). By analogy, 

Os,(7' + Q'I? ' ,  f'33 = + f t )  

× [1 - q(? + ~'fl', f 'l?', f't)] (26) 

is the new scattering coefficient. It is seen that 
(25) and (26) are connected by an expression 
analogous to Eq. (22). 

NUMERICAL EXAMPLES 

To illustrate dependence of the extinction coeffi- 
cient on the parameters in its definition, we pre- 
sent results of numerical experiments here. Con- 
sider a plane parallel leaf canopy of depth T = 100 
cm filled with circular leaves of diameter dL = 6 
cm. The leaf area index of the canopy is equal to 
3. Assume that leaf area density is constant-  
UL(F) = uL = uL = LAI / T. Consider a sphere of ra- 
dius IF- ~1 = 30 cm located in the canopy, with 
an orientation given by f " ~  (O',~t)= (139°,105°). 
Without loss of detail, we assume that mutual 
shading between leaves in an elementary volume 
is absent. Then from Eqs. (4) and (21) we have 

a(F + ol; ,  a') 
= uLG(F + ~fl, [l)[1 - q~  + GO, OI;, fit)], 
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Figure 3. Dependence  of the extinction co- 
efficient o on distance 4 from the point of 
interaction F: 1) 4=2 .8  cm, C = 9 . 5 % ;  2) 
4=4 .3  cm, C =4 . 7%;  3) 4=5 . 6  cm, C=  
2.8%; 4) 4=8 .5  cm, C= 1.4%; 5) 4=11 .3  
cm, C =0 . 9%;  6) 4= 17.0 cm, C=  0.6%; 7) 
4 = 28.3 cm, C = 0.4%. The problem param- 
eters are T= 100 cm, LAI= 3, dL= 6 cm, 
0 '= 139 °, ~o'= 105 °, ~o = ~o'+ 180 °. Leaves 
are horizontal. 

where G is defined by (2) and q is defined by (17) 
and (21). 

Of special interest is the following question: 
How important is the consideration of the proba- 
bility of encountering voids for photon transport 
in a canopy of finite dimensional scatterers. Con- 
sider the integral C of the probability q over the 
lower hemisphere (since ~ is directed down- 
wards), 

C - 100% !2_q( ~ + ~£, £1~, f~) df~' 
27r 

_11 aal. 
=100% 1 2rjz ~- O(?+~fl, fl) 

The value of C can be taken as an index of the 
influence of leaf size on the extinction coefficient; 
a smaller C indicates a smaller error if leaf size is 
ignored. 

The dependence of extinction coefficient o on 
polar angle 0 is shown in Figure 3, for azimuth 
~o=~o'+ 180 °. The leaves were assumed to be 
horizontal. The curves correspond to different 
distances to the center of the sphere along fl, that 
is, to different values of ~ = I?~ - ?1. It is clear that 
as ~ increases, the probability q of encountering 
a void decreases, and a tends to 6 for any fl except 
for the region around the retrodirection, fl = - fl'. 

The values of C for different ~ and constant 
leaf dimensions are given in the caption in Figure 
3. One can correlate these numbers and curves 
with constant ~ and varying dL. However, it is 
sufficient to note the term ~/dL in the exponent 
[cf. Eqs. (17), (19), and (21)]. Thus, an increase 
of ~ by a factor is equivalent to a decrease in leaf 
diameter dL by the same factor. 

Figure 4 illustrates the influence of azimuth 
on a, for ~=2.8  cm. Curve 1 in Figure 3 

corresponds to curve 6 in Figure 4 (~o = ~ot+ 180°). 
The index C = 9.5% in this case. The dependence 
of the ratio a / 6  or the difference 1 - q  on the 
azimuth ¢ is shown in Figure 5. The minimum 
value corresponds to the polar angle of the retro- 
incidence direction (0 = 41°). 

C O N C L U D I N G  R E M A R K S  

In this article, we have developed a formalism for 
photon interactions in media with finite-dimen- 
sional scattering centers. In these media the as- 
sumption that each scattering center is in the far 
field of radiation scattered from all other scatter- 
ers is not valid. Although the details are those 
relating to a leaf canopy, it should be emphasized 
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that the principles developed here are equally 
applicable in studies on light scattering from 
rough surfaces that show opposition brightening. 

The transport of energy by radiation can be 
visualized as consisting of two even t s - the  mean 
length of photon free path (along this length a 

photon streams without a change in its direction 
of flight) and the scattering event (where the 
direction of photon travel is altered). These two 
events are characterized by the extinction co- 
efficient u and the differential scattering coeffi- 
cient as. 
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As an abstraction, we propose that a leaf can- 
opy consists of two nonoverlapping regions. The 
first is a turbid medium filled with phytoelements. 
The theory for a turbid plate medium developed 
by Ross (1981) is applicable with some minor 
modification. The second region is the randomly 
distributed zones devoid of phytoelements: the 
so-called empty zones or voids. Hence, photon 
free path in a leaf canopy is the sum of two 
random values. The first characterizes the phy- 
tomedium and the second the voids. Thus, the 
probability of photon capture is a product of two 
probabi l i t ies- the probability of being absorbed 
or scattered in a phytomedium and the probability 
of encountering a phytomedium. Since the first is 
known, we need to define the probability of a 
photon encountering a void. This probability at a 
phase-space point (?,fl) depends on the previous 
state of a photon (~,f~'). It is postulated that the 
interval between the points ~ and ~ is free of 
phytoelements. Considering the finite scatterers, 
this interval is assumed to extend to a small cone, 
depending on the dimensions of the phytoele- 
ments. It means that the probability for a photon 
to be captured while traveling from ~ to the 
neighborhood of ~ along - f l '  is equal to zero. 
Contrast this with the fact that in a turbid medium 
the probability of capture for a photon traveling 
an elementary distance is always greater than 
zero. This is the main difference between the 
theories in media with finite-dimensional and 
nondimensional scatterers. 

In order to derive the probability of encoun- 
tering a void, the leaf canopy was abstracted as a 
combination of oriented spheres. Two successive 
points of interactions are the center of a sphere 
and a point on its surface, respectively. For 
uniqueness, we propose that voids are contained 
inside the sphere only. This permits the derivation 
of an initial-value problem for the probability of 
encountering voids. 

The numerical results presented indicate the 
boundaries of the applicability of turbid medium 
theory for media with finite-dimensional scatter- 
ers. In other words, they indicate how small the 
leaves should be to ignore their dimensions. The 
theory also helps us to describe the hot spot effect 
in an abstract way for rough surfaces that show 
opposition brightening. 

The next step should be the derivation of the 
transport equation in a leaf canopy with finite- 

dimensional scattering centers and to deal with 
the interaction between a leaf canopy and the 
adjacent atmosphere. To solve the leaf canopy 
transport problem, we need to specify as initial 
data the conditional intensity incident from the 
atmosphere. This is discussed in detail by Myneni 
et al. (1991). 

A P P E N D I X :  C O N S I D E R A T I O N  
OF MUTUAL SHADING EFFECTS 

In the text we assumed that a leaf canopy has 
finite-dimensional scattering centers. However, 
two small finite volumes with the same leaf area 
density UL(?) and geometry factors G(?,~) might 
have different properties, depending on the over- 
lapment or shading between leaves when viewed 
along ft. The function X was introduced by Myneni 
et al. (1991) to account for mutual shading effects. 
In this appendix, we present a model for X and 
discuss the consequences. 

In general, x = X(?,aL,flL,~). The problem of 
specifying a strict definition for X is not trivial, 
and we shall leave this topic for a detailed analysis 
at a later time. Here, we propose to approximate 
it by an exponential function, namely, 

X(Y, aL, ~'~L, ~'~) = exp[ - Ash(Y, aL, I(flL" ~)1], 
(A.1) 

where 0 ~ Ash < 1 is a fraction of the shadow area 
of leaves with size aL and normal ~L in an finite 
volume around ? when illuminated along ft. If 
the scattering centers are nondimensional, then 
Ash = 0, that is, no cross-shading between leaves 
and x = 1. The same is true when a photon grazes 
along the surface of a leaf. 

With the above in mind, we introduce the 
function G(Y,fl,aL) instead of (2). It characterizes 
the nonoverlapped area that is projected on a 
plane perpendicular to the direction ~, namely 
(Myneni et al., 1991), 

--  I2 gL( ,aL)laaLIx( , aL, a/ aaL 
(A.2) 

In case of nondimensional leaves, x = 1, and 

lim G(?, fl, aL) = G(?, ~). 
a L  ~ 0 

It is not difficult to calculate the generalized 
geometry factor G for different leaf orientations. 
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For instance, for horizontal leaves 

G(?, fl, aL) =/~ exp( - Ash#), 

where  cos-~ # is the direction of photon  travel. 
If leaves have a spherical orientation, then g(?, 
ilL) = 1 and 

G(?, 0;at) = A& 2 [1 - exp( - Ash) - Ash exp( - Ash)]. 

Also, if Ash ~ 0, then  G ~ 0.5. 
Following Myneni et al. (1991), the extinction 

coefficient 6 can be wri t ten as 

6(?, O) = IoacnL(-?, aL)PL(?, at)G(?, O, ac) daL. 

Similarly, the differential scattering coefficient be- 
comes 

n) 
=;[ - oaLnL(r, aL)F(?, daL, 

where  I ~ /7r is the finite-leaf analog of the area 
scattering phase function (Myneni et al. 1991): 

(1 / n,  = / er )J2 .+  ilL)In', f i l l  

x ~/L(e, flL;fl' -~ O)xf f ,  aL, flL, Or) dOL. 

Now we consider a numerical experiment for 
estimating the contribution of x to the extinction 
coefficient a. For evaluation of the G function, we 
shall use (A.2) instead of (2), and approximate X by 

(A.1). Six curves with different degree  of mutual  
shading (0-80 %) are shown in Figure 6. It is seen 
that when  0 > 70 °, the role of mutual  shading in 
aggregations of horizontal leaves is not signifi- 
cant. However,  around the nadir, mutual  shading 
effects are large for this particular case of constant 
leaf area density uL. This leads to a greater  proba- 
bility of escape for photons  traveling this volume, 
and therefore,  a smaller extinction coefficient 
(curve 6). 
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